16,859 research outputs found

    Quantum Melting of Charge Order due to Frustration in Two-Dimensional Quarter-Filled Systems

    Full text link
    The effect of geometrical frustration in a two-dimensional 1/4-filled strongly correlated electron system is studied theoretically, motivated by layered organic molecular crystals. An extended Hubbard model on the square lattice is considered, with competing nearest neighbor Coulomb interaction, V, and that of next-nearest neighbor along one of the diagonals, V', which favor different charge ordered states. Based on exact diagonalization calculations, we find a metallic phase stabilized over a broad window at V' ~ V even for large Coulomb repulsion strengths as a result of frustrating the charge ordered states. Slightly modifying the lattice geometry relevant to the actual organic compounds does not alter the results, suggesting that this `quantum melting' of charge order is a robust feature of frustrated strongly correlated 1/4-filled systems.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    Formulating the Net Gain of MISO-SFN in the Presence of Self-Interferences

    Get PDF
    In this study, an analytical formula for multiple-input single-output single frequency network gain (MISO-SFNG) is investigated. To formulate the net MISO-SFNG, we derived the average signal to interference plus noise ratio (SINR) where the gain achieved by the distributed MISO diversity as a function of power imbalance is curve-fitted. Further, we analyzed the losses owing to self-interferences resulting from the delay spread and imperfect channel estimation. We verified the accuracy and effectiveness of the derived formula by comparing the measurement results with the analytical results. The derived formula helps to understand how various system factors affect the gain under a given condition. The formula can be used to evaluate the MISO-SFNG and to predict the MISO-SFN coverage in various system configurations

    Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition

    Full text link
    Temperature-dependent resistivity of graphene grown by chemical vapor deposition (CVD) is investigated. We observe in low mobility CVD graphene device a strong insulating behavior at low temperatures and a metallic behavior at high temperatures manifesting a non-monotonic in the temperature dependent resistivity.This feature is strongly affected by carrier density modulation. To understand this anomalous temperature dependence, we introduce thermal activation of charge carriers in electron-hole puddles induced by randomly distributed charged impurities. Observed temperature evolution of resistivity is then understood from the competition among thermal activation of charge carriers, temperature-dependent screening and phonon scattering effects. Our results imply that the transport property of transferred CVD-grown graphene is strongly influenced by the details of the environmentComment: 7 pages, 3 figure

    Frustrated Spin System in theta-(BEDT-TTF)_2RbZn(SCN)_4

    Full text link
    The origin of the spin gap behavior in the low-temperature dimerized phase of theta-(BEDT-TTF)_2RbZn(SCN)_4 has been theoretically studied based on the Hartree-Fock approximation for the on-site Coulomb interaction at absolute zero. Calculations show that, in the parameter region considered to be relevant to this compound, antiferromagnetic ordering is stabilized between dimers consisting of pairs of molecules coupled with the largest transfer integral. Based on this result an effective localized spin 1/2 model is constructed which indicates the existence of the frustration among spins. This frustration may result in the formation of spin gap.Comment: 4 pages, 5 figures, to be published in J. Phys. Soc. Jpn. 67 (1998) no.

    Journey of water in pine cones

    Get PDF
    Pine cones fold their scales when it rains to prevent seeds from short-distance dispersal. Given that the scales of pine cones consist of nothing but dead cells, this folding motion is evidently related to structural changes. In this study, the structural characteristics of pine cones are studied on micro-/macro-scale using various imaging instruments. Raindrops fall along the outer scales to the three layers (bract scales, fibers and innermost lignified structure) of inner pine cones. However, not all the layers but only the bract scales get wet and then, most raindrops move to the inner scales. These systems reduce the amount of water used and minimize the time spent on structural changes. The result shows that the pine cones have structural advantages that could influence the efficient motion of pine cones. This study provides new insights to understand the motion of pine cones and would be used to design a novel water transport system.119Ysciescopu

    Incommensurate Mott Insulator in One-Dimensional Electron Systems close to Quarter Filling

    Full text link
    A possibility of a metal-insulator transition in molecular conductors has been studied for systems composed of donor molecules and fully ionized anions with an incommensurate ratio close to 2:1 based on a one-dimensional extended Hubbard model, where the donor carriers are slightly deviated from quarter filling and under an incommensurate periodic potential from the anions. By use of the renormalization group method, interplay between commensurability energy on the donor lattice and that from the anion potential has been studied and it has been found that an "incommensurate Mott insulator" can be generated. This theoretical finding will explain the metal-insulator transition observed in (MDT-TS)(AuI2_2)0.441_{0.441}.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jpn. at December 24 200

    Growth Dynamics of Photoinduced Domains in Two-Dimensional Charge-Ordered Conductors Depending on Stabilization Mechanisms

    Full text link
    Photoinduced melting of horizontal-stripe charge orders in quasi-two-dimensional organic conductors \theta-(BEDT-TTF)2RbZn(SCN)4[BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene] and \alpha-(BEDT-TTF)2I3 is investigated theoretically. By numerically solving the time-dependent Schr\"odinger equation, we study the photoinduced dynamics in extended Peierls-Hubbard models on anisotropic triangular lattices within the Hartree-Fock approximation. The melting of the charge order needs more energy for \theta-(BEDT-TTF)2RbZn(SCN)4 than for \alpha-(BEDT-TTF)2I3, which is a consequence of the larger stabilization energy in \theta-(BEDT-TTF)2RbZn(SCN)4. After local photoexcitation in the charge ordered states, the growth of a photoinduced domain shows anisotropy. In \theta-(BEDT-TTF)2RbZn(SCN)4, the domain hardly expands to the direction perpendicular to the horizontal-stripes. This is because all the molecules on the hole-rich stripe are rotated in one direction and those on the hole-poor stripe in the other direction. They modulate horizontally connected transfer integrals homogeneously, stabilizing the charge order stripe by stripe. In \alpha-(BEDT-TTF)2I3, lattice distortions locally stabilize the charge order so that it is easily weakened by local photoexcitation. The photoinduced domain indeed expands in the plane. These results are consistent with recent observation by femtosecond reflection spectroscopy.Comment: 9 pages, 8 figures, to appear in J. Phys. Soc. Jpn. Vol. 79 (2010) No.

    Finite-Temperature Properties across the Charge Ordering Transition -- Combined Bosonization, Renormalization Group, and Numerical Methods

    Full text link
    We theoretically describe the charge ordering (CO) metal-insulator transition based on a quasi-one-dimensional extended Hubbard model, and investigate the finite temperature (TT) properties across the transition temperature, TCOT_{\rm CO}. In order to calculate TT dependence of physical quantities such as the spin susceptibility and the electrical resistivity, both above and below TCOT_{\rm CO}, a theoretical scheme is developed which combines analytical methods with numerical calculations. We take advantage of the renormalization group equations derived from the effective bosonized Hamiltonian, where Lanczos exact diagonalization data are chosen as initial parameters, while the CO order parameter at finite-TT is determined by quantum Monte Carlo simulations. The results show that the spin susceptibility does not show a steep singularity at TCOT_{\rm CO}, and it slightly increases compared to the case without CO because of the suppression of the spin velocity. In contrast, the resistivity exhibits a sudden increase at TCOT_{\rm CO}, below which a characteristic TT dependence is observed. We also compare our results with experiments on molecular conductors as well as transition metal oxides showing CO.Comment: 9 pages, 8 figure

    Charge Ordering in Organic ET Compounds

    Full text link
    The charge ordering phenomena in quasi two-dimensional 1/4-filled organic compounds (ET)_2X (ET=BEDT-TTF) are investigated theoretically for the θ\theta and α\alpha-type structures, based on the Hartree approximation for the extended Hubbard models with both on-site and intersite Coulomb interactions. It is found that charge ordered states of stripe-type are stabilized for the relevant values of Coulomb energies, while the spatial pattern of the stripes sensitively depends on the anisotropy of the models. By comparing the results of calculations with the experimental facts, where the effects of quantum fluctuation is incorporated by mapping the stripe-type charge ordered states to the S=1/2 Heisenberg Hamiltonians, the actual charge patterns in the insulating phases of θ\theta-(ET)_2MM'(SCN)_4 and α\alpha-(ET)_2I_3 are deduced. Furthermore, to obtain a unified view among the θ\theta, α\alpha and κ\kappa-(ET)_2X families, the stability of the charge ordered state in competition with the dimeric antiferromagnetic state viewed as the Mott insulating state, which is typically realized in κ\kappa-type compounds, and with the paramagnetic metallic state, is also pursued by extracting essential parameters.Comment: 35 pages, 27 figures, submitted to J. Phys. Soc. Jp
    corecore